
. (a)	Molasses is a solution obtained from sugar beet plants. The sugars presen
	in molasses are sucrose, glucose and fructose. Give the number of different types of monosaccharides present in molasses.
(b)	A student used the biochemical test for reducing sugars on a clear sample of molasses.
	Describe the biochemical test for a reducing sugar.
	Explain the result expected from the test on the sample of molasses.
	Description of biochemical test
	Explanation of expected result
(0)	'Free sugar' is the sugar in food and drinks released when food is crushed
(c)	or when sugar is added to food at home or by manufacturers.
	Scientists recommend that no more than 5% of the energy consumed per day should come from 'free sugar'. The mean daily energy requirement for a 10-year-old child is 8100 kJ
	The 'free sugar' in one tablespoon of molasses contains 250 kJ of energy.

Number of tablespoons _____ per day

(d) A scientist used the apparatus in below figure to investigate osmosis.

Use your understanding of osmosis to explain why the air pressure in the tube increased.

(2)

(Total 10 marks)

(e)	molasses. The scientist did not change the volume of molasses at the start of the investigation.
	The scientist observed that the air pressure inside the tube increased by 160 kPa compared with 800 kPa in the first investigation.
	Suggest the change the scientist made to the molasses to cause this smaller increase in air pressure.
	Use the air pressure figures in a calculation to support your answer.

Suggested change _____

Q2.

(a) Chitin is a polysaccharide. The chitin monomer is a β -glucose molecule with one OH group replaced by an NHCOCH $_3$ group. NHCOCH $_3$ can be represented by N(Ac).

The figure below shows the monomer that forms chitin and the chitin polymer.

Chitin has a similar structure to cellulose.

Use the figure above to describe **three** ways the structure of chitin is similar to the structure of cellulose.

1	
2	
3	

Explain the im	portance of one a	daptation of the	gas exchang	ie surface in
the tracheal sy	ystem of an insect.		gao oxonang	
	ymer found in the v			ıts. Lignin
keeps the xyle	ymer found in the very vessel open as apportance of the xy	a continuous tu	ibe.	-
keeps the xyle	em vessel open as	a continuous tu	ibe.	-
keeps the xyle	em vessel open as	a continuous tu	ibe.	-
keeps the xyle	em vessel open as	a continuous tu	ibe.	-
keeps the xyle	em vessel open as	a continuous tu	ibe.	-
keeps the xyle	em vessel open as	a continuous tu	ibe.	-
keeps the xyle	em vessel open as	a continuous tu	ibe.	-
keeps the xyle	em vessel open as	a continuous tu	ibe.	-

)3. (a)	What term is used to describe the different structures of α -glucose and β -glucose?
(b)	A student investigated the difference in the reducing sugar content of two fruit juices. He performed a biochemical test on each fruit juice using Benedict's solution. He then used a colorimeter with each test result.
	Describe how the results from the colorimeter can identify the fruit juice containing the higher sugar content.
(c)	The student controlled variables in the test using Repedict's solution
(c)	The student controlled variables in the test using Benedict's solution.
(c)	The student controlled variables in the test using Benedict's solution. Give two variables the student controlled.
(c)	

(d)	Apples consist of flesh tissue which surrounds core tissue where the seeds are located.
	A student has an apple with a mass of 180 g The ratio of flesh tissue to core tissue in this apple is 5:1 8% of the whole apple is sugar.
	Calculate the mass of sugar in the flesh tissue.
	Show your working.
	Amouse
	Answer
	Answer g (2
(e)	
(e)	lodine solution stains fresh apple tissue black. When iodine solution is
(e)	lodine solution stains fresh apple tissue black. When iodine solution is added to apples stored for a week, the stain is less black.
(e)	lodine solution stains fresh apple tissue black. When iodine solution is added to apples stored for a week, the stain is less black. The water potential of apple juice decreases when apples are stored. Suggest why the water potential of apple juice decreases when apples are
(e)	lodine solution stains fresh apple tissue black. When iodine solution is added to apples stored for a week, the stain is less black. The water potential of apple juice decreases when apples are stored. Suggest why the water potential of apple juice decreases when apples are
(e)	lodine solution stains fresh apple tissue black. When iodine solution is added to apples stored for a week, the stain is less black. The water potential of apple juice decreases when apples are stored. Suggest why the water potential of apple juice decreases when apples are
(e)	lodine solution stains fresh apple tissue black. When iodine solution is added to apples stored for a week, the stain is less black. The water potential of apple juice decreases when apples are stored. Suggest why the water potential of apple juice decreases when apples are
(e)	lodine solution stains fresh apple tissue black. When iodine solution is added to apples stored for a week, the stain is less black. The water potential of apple juice decreases when apples are stored. Suggest why the water potential of apple juice decreases when apples are
(e)	lodine solution stains fresh apple tissue black. When iodine solution is added to apples stored for a week, the stain is less black. The water potential of apple juice decreases when apples are stored. Suggest why the water potential of apple juice decreases when apples are

	Describe the transport of carbohydrate in plants.
.)	Compare and contrast the structure of starch and the structure of cellulose
)	Compare and contrast the structure of starch and the structure of cellulose
)	Compare and contrast the structure of starch and the structure of cellulose
))	Compare and contrast the structure of starch and the structure of cellulose
))	Compare and contrast the structure of starch and the structure of cellulose
))	Compare and contrast the structure of starch and the structure of cellulose
))	Compare and contrast the structure of starch and the structure of cellulose
)	Compare and contrast the structure of starch and the structure of cellulose
))	Compare and contrast the structure of starch and the structure of cellulose
)	Compare and contrast the structure of starch and the structure of cellulose
))	Compare and contrast the structure of starch and the structure of cellulose
)	Compare and contrast the structure of starch and the structure of cellulose
	Compare and contrast the structure of starch and the structure of cellulose

escribe the complete digestion of starch by a	mammal.	
	(Total 15 n	